Nickel Extraction from Morowali Laterite Ore with Chloride Acid (HCl) – Nitric Acid (HNO3) Solution
DOI:
https://doi.org/10.22487/j24775185.2024.v13.i1.pp1-6Keywords:
Extraction, nickel, hydrochloric acid-nitric acid solution, TaguchiAbstract
Nickel is a metal of high strategic value for human needs to make stainless steel, batteries, and other products. The amount of nickel reserves in the world is about 72 % in rock oxides, and the rest is in sulfide rocks. However, only about 42 % of total nickel production in the world comes from laterite ore, while nickel sulfide is mainly produced. Research was conducted to determine the optimum nickel extraction parameters in a mixture of nitric acid and hydrochloric acid, and to determine the effect of the solvent volume ratio, temperature, and leaching time parameters on the nickel leaching results from laterite samples. This study uses the taguchi¬larger the better method with each factor having three levels of conditions, namely the volume ratio of the solvent using variations of 1: 1, 1: 2, and 2: 1 then variations in temperature of 30°C, 60 °C, and 90 °C as well as variations in the leaching time of 3 hours, 6 hours, and 12 hours. The optimum conditions for nickel extraction are a parameter ratio of 1:1, a temperature of 90 °C, and a leaching time of 6 hours. The results of atomic absorption spectrophotometer analysis showed that the concentration of Ni2+ at optimum conditions was 10.7895 ppm, and the recovery value was 2.54 %.
References
Ali, I., Gaydukova, A., Kon'kova, T., ALOthman, Z. A., & Sillanpää, M. (2023). Kinetics and optimization of metal leaching from heat-resistant nickel alloy solid wastes. Molecules (Basel, Switzerland), 28(14), 1-14.
Arifin, M., Widodo, S., & Anshariah. (2015). Karakteristik endapan nikel laterit pada blok x PT. Bintangdelapan Mineral kecamatan Bahodopi kabupaten Morowali provinsi Sulawesi Tengah. Jurnal Geomine, 1(1), 38-45.
Astuti, W., Hirajima, T., Sasaki, K., & Okibe, N. (2016). Comparison of atmospheric citric acid leaching kinetics of nickel from different indonesian saprolitic ores. Hydrometallurg, 161(12), 138-151.
Aziza, A. (2017) Optimasi proses ekstraksi nikel-kobalt menggunakan cyanex 272 dari laterit dengan metode taguchi. Unpublished undergraduate's thesis: Lampung: Bandar Lampung Universitas.
Carvalho-Silva, V. H., Coutinho, N. D., & Aquilanti, V. (2019). Temperature dependence of rate processes beyond Arrhenius and Eyring: Activation and transitivity. Frontiers in Chemistry, 7(May), 1-11.
Chaerun, S.K., Winarko, R., Yushandiana, F. (2023). Biohydrometallurgy: Paving the way for a greener future of mineral processing in Indonesia. Current Research on Biosciences and Biotechnology, 5(1), 299–307.
Chou, E. C., Queneau, P. B., & Rickard, R. S. (1977). Sulfuric acid pressure leaching of nickeliferous limonites. Metallurgical and Materials Transactions B, 8(December), 547–554.
Febriana, E., Tristiyan, A., Mayangsari, W., & Prasetyo, A. B. (2018). Kinetika dan mekanisme pelindian dari bijih nikel limonit: Pengaruh waktu dan temperatur. Metalurgi, 33(2), 61-68.
Georgiou, D., & Papangelakis, V. G. (1998). Sulphuric acid pressure leaching of a limonitic laterite: Chemistry and kinetics. Hydrometallurgy, 49(1-2), 23-46.
He, F., Ma, B., Wang, C., & Chen, Y. (2022). Mineral evolution and porous kinetics of nitric acid pressure leaching limonitic laterite. Minerals Engineering, 181(15), 1-8.
Li, J., Yang, Y., Wen, Y., Liu, W., Chu, Y., Wang, R., & Xu, Z. (2020). Leaching kinetics and mechanism of laterite with NH4Cl-HCl solution. Minerals, 10(9), 754-765.
Lintjewas, L., Setiawan, I., & Al Kausar, A. (2019). Profil endapan nikel laterit di daerah palangga, provinsi Sulawesi Tenggara. RISET Geologi dan Pertambangan, 29(1), 91-104.
MacCarthy, J., Nosrati, A., Skinner, W., & Addai-Mensah, J. (2016). Atmospheric acid leaching mechanisms and kinetics and rheological studies of a low grade saprolitic nickel laterite ore. Hydrometallurgy, 160, 26–37.
Peng, X., Shi, L., Qu, T., Yang, Z., Lin, L., Xie, G., & Xu, B. (2023). Kinetics of Ni and Co recovery via oxygen-enriched pressure leaching from waste lithium-ion batteries. Separations, 10(2), 1-14.
Pérez-Portugal, A., Atencio, E., Muñoz-La Rivera, F., & Herrera, R. F. (2023). Calibration of UAV flight parameters to inspect the deterioration of heritage façades using orthogonal arrays. Sustainability, 15(1), 1-22.
Prasetyo, A. B., & Prasetyo, P. (2015). Peningkatan kadar nikel (Ni) dan besi (Fe) dari bijih nikel laterit kadar rendah jenis saprolit untuk bahan baku nickel containing pig iron (NCPI/NPI). Metalurgi, 26(3), 123-130.
Purnawan, I. K. J., Walanda, D. K., & Napitupulu, M. (2022). Extraction of nickel from Morowali laterite ore with hydrochloric acid (HCl). Jurnal Akademika Kimia, 11(3), 134-139.
Putera, A. D. P., Warmada, I. W., Amijaya, D. H., Astuti, W., Sukadana, I. G., Petrus, H. T. B. M. (2023). A Comparison study of nickel laterite reduction using coal and coconut shell charcoal: A factsage simulation. International Journal of Technology, 14(2), 267-275.
Sampath, S., Ravi, V. P., & Sundararajan, S. (2023). An overview on synthesis, processing, and applications of nickel aluminides: From fundamentals to current prospects. Crystals, 13(3), 1-21.
Sidi, P., & Wahyudi, M. T. (2013) Aplikasi metoda taguchi untuk mengetahui optimasi kebulatan pada proses bubut CNC. Rekayasa Mesin, 4(2), 101-108.
Solihin., & Firdiyono, F. (2018). Perilaku pelarutan logam nikel dan besi dari bijih nikel kadar rendah Sulawesi Tengah. Majalah Metalurgi, 29(2), 118-121.
Stanković, S., Stopić, S., Sokić, M., Marković, B., & Friedrich, B. (2020). Review the past, present, and future hydrometallurgical production of nickel and cobalt from lateritic ores. Metallurgical and Materials Engineering, 26(2), 199–208.
Sudibyo., Hermida, L., Junaedi, A., & Putra, F. A. (2017). Application of Taguchi optimisation of electro metal–electro winning (EMEW) for nickel metal from laterite. Proceedings of the 3rd International Symposium on Applied Chemistry (pp. 020004-1-020004-6). New York: AIP Publishing LLC.
Sutisna, N. A., & Nowoasto, S. A. (2023). Optimization of machining parameters and tool angle on surface quality of turning operation using Taguchi grey relational analysis. Jurnal ROTASI, 25(2), 1-7.
Tanujaya, F. H. (2017) Kinetika proses reactive extraction nikel laterit dengan menggunakan asam nitrat pada kondisi atmosferik. Unpublished undergraduate's thesis: Bandung: Universitas Katolik Parahyangan.
Taylor, C. J., Pomberger, A., Felton, K. C., Grainger, R., Barecka, M., Chamberlain, T. W., Bourne, R. A., Johnson, C. N., & Lapkin, A. A. (2023). A brief introduction to chemical reaction optimization. Chemical Reviews, 123(6), 3089–3126.
Tian, Qh., Dong, B., Guo, Xy., Wang, Qa., Xu, Zp., Li, D. (2023). Valuable metals substance flow analysis in high-pressure acid leaching process of laterites. Journal of Central South University. 30(July), 1776–1786.
Wahab., Anshari, E., Mili, M. Z., Nafiu, W. D. R. A., Khaq, M. N., Deniyatno., Firdaus., Supriyatna. (2021). Studi pengaruh variabel proses dan kinetika ekstraksi nikel dari bijih nikel laterit menggunakan larutan asam sulfat pada tekanan atmosferik. Jurnal Rekayasa Proses, 15(1), 37-38.
Wanta, K. C., Perdana, I., & Petrus, H. T. B. M. (2016). Evaluation of shrilnnking core model in leaching process of pomalaa nickel laterite using citric acid as leachant at atmospheric conditions. Proceedings of the IOP Conference Series: Materials Science and Engineering (pp. 1-6). United Kingdom: IOP Publishing.
Wanta, K. C., Tanujaya, F. H., Susanti, R. F., Petrus, H. T. B. M & Astuti, W. (2018). Studi kinetika proses atmospheric pressure acid leacing bijih laterit limonit menggunakan larutan asam nitrat konsentrasi rendah. Jurnal Rekayasa Proses, 12(2), 77– 84.
Whittington, B. I., & Muir, D. (2000). Pressure acid leaching of nickel laterites: A review. Mineral Processing and Extractive Metallurgy Review, 21(6), 527–599.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Leonardo Leonardo, Daud K. Walanda, Mery Napitupulu, Purnama Ningsih

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.