Synthesis of Fluorescent Carbon Dots from Soybean Residuals Using Hydrothermal Method

Authors

  • Dinda G. Ayu Universitas Sumatera Utara
  • Saharman Gea Universitas Sumatera Utara
  • Andriayani Andriayani Universitas Sumatera Utara
  • Ronn Goei Nanyang Technological University

DOI:

https://doi.org/10.22487/j24775185.2023.v12.i2.pp71-77

Keywords:

Soybean residuals, fluorescent, carbon dots, quantum yield

Abstract

Soybean residuals are biowaste composed of carbon chains and amine groups bounded in peptide linkages. The component was identified through FTIR analysis which showed the vibration of the diamide bond (N=C=N) at wave number 2132cm-1. Owing to the existence of these components, soybean has the potential to be used as a precursor to synthesize carbon nano-material, such as Carbon Dots (C - Dots). In this study, the synthesis of C - Dots material from soybean residuals was carried out using the facile hydrothermal method at a temperature of 200 oC for 6 hours. Afterward, the as-synthesized C - Dots were analyzed for their optical property, structure, and morphology. Based on the analysis of the UV - Vis and photoluminescent spectra, C - Dots exhibited absorbance peaks of 292 nm and 301 nm in the UV light region, and fluorescence emission peaks of 468 nm, with blue luminescence characteristics. The observation was supported by the morphological analysis using the HR - TEM, C - Dots exist in a spherical shape with an average particle size of 3.467 nm and a lattice distance of 0.363 nm. Besides, the C - Dots exhibited a good quantum yield of 28.15 %. From the results of the analysis, it is known that the synthesis of C - Dots material has been successfully carried out with particle size < 10 nm.

Author Biographies

Dinda G. Ayu, Universitas Sumatera Utara

Postgraduate School, Department of Chemistry / FMIPA

Department of Chemistry / FMIPA

Cellulosic and Functional Materials Research Centre

Saharman Gea, Universitas Sumatera Utara

Department of Chemstry/FMIPA

Andriayani Andriayani, Universitas Sumatera Utara

Department of Chemistry / FMIPA

Ronn Goei, Nanyang Technological University

School of Materials Science and Engineering

References

Abbas, A., Mariana, L. T., & Phan, A. N. (2018). Biomass-waste derived graphene quantum dots and their applications. Carbon, 140(Desember), 77-99.

Abbas, M., Adil, M., Ehtisham-ul-Haque, S., Munir, B., Yameen, M., Ghaffar, A., Shar, G. A., Tahir, M. A., & Iqbal, M. (2018). Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Science of the Total Environment, 626(June), 1295-1309.

Alkian, I., Sutanto, H., & Hadiyanto. (2022). Quantum yield optimization of carbon dots using response surface methodology and its application as control of Fe3+ ion levels in drinking water. Materials Research Express, 9(015702), (1-17).

Almaraz, J. J., Zhou, X., Mabood, F., Madramootoo, C., Rochette, P., Ma, B., & Smith, D. L. (2009). Greenhouse gas fluxes associated with soybean production under two tillage systems in southwestern quebec. Soil & Tillage Research, 104(1), 134–139.

Baker, S. N., & Baker, G. A. (2010). Luminescent carbon nanodots: Emergent nanolights. Angewandte Chemie International Edition, 49(38), 6726–6744.

Bayat, A., & Saievar-Iranizad, E. (2017). Synthesis of blue photoluminescent WS2 quantum dots via ultrasonic cavitation. Journal of Luminescence, 185(May), 236–240.

Bhunia, S. K., Saha, A., Maity, A. R., Ray, S. C., & Jana, N. R. (2013). Carbon nanoparticle-based fluorescent bioimaging probes. Scientific Reports, 3(March), 1-7.

Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., & Liu, Y. (2015). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chemical Engineering Journal, 284(January), 582-598.

Cui, X., Zhu, L., Wu, J., Hou, Y., Wang, P., Wang, Z., & Yang, M. (2015). A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosensors and Bioelectronics, 63(January), 506–512.

Gokus, T., Nair, R. R., Bonetti, A., Bohmler, M., Lombardo, A., Novoselov, K. S., Geim, A. K., Ferrari, A. C., & Hartschuh, A. (2009). Making graphene luminescent by oxygen plasma treatment. ACS Nano, 3(12), 3963–3968.

Hasan, M. R., Saha, N., Quaid, T., & Reza, M. T. (2021). Formation of carbon quantum dots via hydrothermal carbonization: Investigate the effect of precursors. Energies, 14(4), 1–10.

Hasija, V., Sudhaik, A., Raizada, P., Hosseini-Bandegharaei, A., & Singh, P. (2019). Carbon quantum dots supported AgI /ZnO/phosphorus doped graphitic carbon nitride as Z-scheme photocatalyst for efficient photodegradation of 2, 4-dinitrophenol. Journal of Environmental Chemical Engineering, 7(4), 1-12.

Hu, X., Zhao, H., Liang, Y., Chen, F., Li, J., & Chen, R. (2021). Broad-spectrum response NCQDs/Bi2O2CO3 heterojunction nanosheets for ciprofloxacin photodegradation: Unraveling the unique roles of NCQDs upon different light irradiation. Chemosphere, 264(February), 1-12.

Hui, K. C., Ang, W. L., & Sambudi, N. S. (2021). Nitrogen and bismuth-doped rice husk-derived carbon quantum dots for dye degradation and heavy metal removal. Journal of Photochemistry & Photobiology, A: Chemistry, 418(September), 1-12.

Javed, N., & O’Carroll, D. M. (2021). Long-term effects of impurities on the particle size and optical emission of carbon dots. Nanoscale Advances, 3(1), 182-189.

Jiang, K., Sun, S., Zhang, L., Lu, Y., Wu, A., Cai, C., & Lin, H. (2015). Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angewandte Chemie International Edition, 54(18), 1-5.

Lee, B., Zhou, Y., Lee, J. S., Shin, B. K., Seo, J., Lee, D., Kim, Y., & Choi, H. (2018). Discrimination and prediction of the origin of Chinese and Korean soybeans using fourier transform infrared spectrometry (FT-IR) with multivariate statistical analysis. PLoS ONE, 13(4), 1–16.

Li, S., Zhu, D., Li, K., Yang, Y., Lei, Z., & Zhang, Z. (2013). Soybean curd residue: Composition, utilization, and related limiting factors. International Scholarly Research Notices Industrial Engineering, 2013(September), 1-8.

Marpongahtun., Gea, S., Muis, Y., Andriayani., Novita, T., & Piliang, A. F. (2018). Synthesis of carbon nanodots from cellulose nanocrystals oil palm empty fruit by pyrolysis method. IOP Conference Series: Journal of Physics: Conference Series (pp. 1–5). United Kingdom: IOP Publishing.

Mondal, S., Yucknovsky, A., Akulov, K., Ghorai, N., Schwartz, T., Ghosh, H. N., & Amdursky, N. (2019). Efficient photosensitizing capabilities and ultrafast carrier dynamics of doped carbon dots. Journal of the American Chemical Society, 141(38), 15413–15422.

Monday, Y. N., Abdullah, J., Yusof, N. A., Rashid, S. A., & Shueb, R. H. (2021). Facile hydrothermal and solvothermal synthesis and characterization of nitrogen-doped carbon dots from palm kernel shell precursor. Applied Sciences, 11(4), 1–17.

Pudza, M. Y., Abidin, Z. Z., Rashid, S. A., Yasin, F. M., Noor, A. S. M., & Issa, M. A. (2019). Sustainable synthesis processes for carbon dots through response surface methodology and artificial neural network. Processes, 17(10), 1-19.

Ramanan, V., Siddaiah, B., Raji, K., & Ramamurthy, P. (2018). Green synthesis of multifunctionalized, nitrogen-doped, highly fluorescent carbon dots from waste expanded polystyrene and its application in the fluorimetric detection of Au3+ ions in aqueous media. ACS Sustainable Chemistry & Engineering, 6(2), 1627-1638.

Wang, D., Wang, X., Guo, Y., Liu, W., & Qin, W. (2014). Luminescent properties of milk carbon dots and their sulphur and nitrogen doped analogues. Royal Society of Chemistry Advances, 4(93), 51658-51665.

Wang, R., Lu, K., Tang, Z., & Xu, Y. (2017). Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. Journal of Materials Chemistry A, 5(8), 3717–3734.

Wang, Z., Yuan, F., Li, X., Li, Y., Zhong, H., Fan, L., & Yang, S. (2017). 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Advanced Materials, 29(37), 1-7.

Wongso, V., Sambudi, N. S., Sufian, S., & Isnaeni. (2021). The effect of hydrothermal conditions on photoluminescence properties of rice husk-derived silica-carbon quantum dots for methylene blue degradation. Biomass Conversion and Biorefinery, 11(December), 2641-2654.

Wu, P., Li, W., Wu, Q., Liu, Y., & Liu, S. (2017). Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe3+ ions in an acidic environment. Royal Society of Chemistry Advances, 7(70), 44144–44153.

Xia, C., Zhu, S., Feng, T., Yang, M., & Yang, B. (2019). Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Advanced Science, 6(23), 1-23.

Yang, H., Liu, Y., Guo, Z., Lei, B., Zhuang, J., Zhang, X., Liu, Z., & Hu, C. (2019). Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nature Communications, 10(April), 1–11.

Yang, R., Guo, X., Jia, L., Zhang, Y., Zhao, Z., & Lonshakov, F. (2017). Green preparation of carbon dots with mangosteen pulp for the selective detection of Fe3+ ions and cell imaging. Applied Surface Science, 423(November), 426-432.

Zhang, B., Liu, Y., Ren, M., Li, W., Zhang, X., Vajtai, R., Ajayan, P. M., Tour, J. M., & Wang, L. (2019). Sustainable synthesis of bright green fluorescent nitrogen-doped carbon quantum dots from alkali lignin. ChemSusChem (Chemistry-Sustainability-Energy-Materials), 12(18), 4202-4210.

Zhang, L., Wang, Y., Liu, W., Ni, Y., & Hou, Q. (2019). Corncob residues as carbon quantum dots sources and their application in detection of metal ions. Industrial Crops and Products, 133(July), 18-25.

Zhang, Y., He, Y. H., Cui, P. P., Feng, X. T., Chen, L., Yang, Y. Z., & Liu, X. G. (2015). Water-soluble, nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of Hg2+ in aqueous solution. Royal Society of Chemistry Advances 5(50), 40393-40401.

Zhang, Y., Wang, Y., Feng, X., Zhang, F., Yang, Y., & Liu, X. (2016). Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots. Applied Surface Science, 387(November), 1236-1246.

Zhang, Z., Yi, G., Li, P., Zhang, X., Fan, H., Zhang, Y., Wang, X., & Zhang, C. (2020). A minireview on doped carbon dots for photocatalytic and electrocatalytic applications. Nanoscale, 12(26), 13899-13906.

Zuo, J., Jiang, T., Zhao, X., Xiong, X., Xiao, S., & Zhu, Z. (2015). Preparation and application of fluorescent carbon dots. Journal of Nanomaterials, 2015(October), 1-13.

Downloads

Published

2023-05-31

How to Cite

Ayu, D. G. ., Gea, S. ., Andriayani, A., & Goei, R. . (2023). Synthesis of Fluorescent Carbon Dots from Soybean Residuals Using Hydrothermal Method. Jurnal Akademika Kimia, 12(2), 71-77. https://doi.org/10.22487/j24775185.2023.v12.i2.pp71-77

Issue

Section

Articles