Impact of the Concentration Ethylenediamine on Optical Properties of Carbon Dots from Jengkol Peel (Archinendron pauciflorum)

Authors

  • Aniza S. Prayugo Universitas Sumatera Utara
  • Marpongahtun Marpongahtun Universitas Sumatera Utara
  • Saharman Gea Universitas Sumatera Utara

DOI:

https://doi.org/10.22487/j24775185.2023.v12.i1.pp20-25

Keywords:

Carbon dots, dopant ethylenediamine, jengkol peel, solvothermal methods

Abstract

Carbon dots (CDs) are a new member of fluorescent nano carbons that have attracted attention because of their potential applications derived from their optical, chemical, and electrical properties. CDs from jengkol peel via the solvothermal method at 200 oC for 7 h with the addition of ethylenediamine (EDA) as a heteroatom dopant have been successfully carried out. This study aims to determine the effect of concentration EDA on the optical properties of CDs for the possible reason. The results revealed that the CDs solution has fluorescence properties; that bluish-green glow can be observed under ultraviolet radiation (365 nm). The UV - Vis absorption peaks did not depend on the CDs concentration, but the absorbance intensity decreased with increasing EDA concentration. The best fluorescence properties were possessed by 10 % EDA in CDs which produced λex/λem of 370 nm/518 nm, respectively, with a quantum yield of 42 %. The FTIR spectra of all samples showed that the CDs surface had functional groups such as carboxylic acids, hydroxyl, and amines. The obtained CDs have the potential to be used as heavy metal ion detectors, bioimaging, and antibacterial agents.

Author Biographies

Aniza S. Prayugo, Universitas Sumatera Utara

Postgraduate Program of Chemistry, Faculty of Mathematics and Natural Science

Marpongahtun Marpongahtun, Universitas Sumatera Utara

Postgraduate Program of Chemistry, Faculty of Mathematics and Natural ScienceDepartment of Chemistry, Faculty of Mathematics and Natural Science

Saharman Gea, Universitas Sumatera Utara

Postgraduate Program of Chemistry, Faculty of Mathematics and Natural ScienceDepartment of Chemistry, Faculty of Mathematics and Natural Science

References

Ahmed, H. B., Mahmoud, N. E., Mahdi, A. A., Emam, H. E., & Abdelhameed, R. M. (2022). Affinity of carbon quantum dots anchored within metal organic framework matrix as enhancer of plant nourishment. Heliyon, 8(12), 1-13.

Alfauzi, R. A., Ariyanto, B. F., Setyawan, K. P., Sihite, M., & Hidayah, N. (2021). Potensi kulit jengkol sebagai agen penurun kolesterol daging itik Magelang. Jurnal Sain Peternakan Indonesia, 16(1), 98-107.

Alkian, I., Sutanto, H., & Hadiyanto. (2022). Quantum yield optimization of carbon dots using response surface methodology and its application as control of Fe3+ ion levels in drinking water. Materials Research Express, 9(1), 1-17.

Aup-Ngoen, K., Noipitak, M., Nammahachak, N., Ratanaphan, S., Poochai, C., & Tuantranont, A. (2019). The influence of precursors on optical properties of carbon nanodots synthesized via hydrothermal carbonization technique. Journal of Metals, Materials and Minerals, 29(3), 88–94.

Biswal, M. R., & Bhatia, S. (2021). Carbon dot nanoparticles: Exploring the potential use for gene delivery in ophthalmic diseases. Nanomaterials, 11(4), 1–12.

Esmaeili, M., Wu, Z., Chen, D., Singh, A., Sonar, P., Thiel, D., & Li, Q. (2022). Composition and concentration-dependent photoluminescence of nitrogen-doped carbon dots. Advanced Powder Technology, 33(5), 921-930.

Gao, S., Wang, X., Xu, N., Lian, H., Xu, L., Zhang, W., & Xu, C. (2021). From coconut petiole residues to fluorescent carbon dots via a green hydrothermal method for Fe3+ detection. Cellulose, 28(1), 1647-1661.

Han, Y., Liccardo, L., Moretti, E., Zhao, H., & Vomiero, A. (2022). Synthesis, optical properties and applications of red/near-infrared carbon dots. Journal of Materials Chemistry C, 10(33), 11827–11847.

Hutton, G. A. M., Martindale, B. C. M., & Reisner, E. (2017). Carbon dots as photosensitizers for solar-driven catalysis. Chemical Society Reviews, 46(20), 6111-6123.

Jing, H. H., Bardakci, F., Akgöl, S., Kusat, K., Adnan, M., Alam, M. J., & Sasidharan, S. (2023). Green carbon dots: Synthesis, characterization, properties and biomedical applications. Journal of Functional Biomaterials, 14(1), 1-32.

Liu, J., Li, R., & Yang, B. (2020). Carbon dots: A new type of carbon-based nanomaterial with wide applications. American Chemical Society Central Science, 6(12), 2179–2195.

Liu, Y., Yong, C., Tong, B., Li, Y., Wang, N., & Lei, Y. (2022). Modification of carbon dots derived from biomass by exogenous nitrogen doping: Action mechanism and difference analysis. Optical Materials, 134(10), 1-9.

Manioudakis, J., Victoria, F., Thompson, C. A., Brown, L., Movsum, M., Lucifero, R., & Naccache, R. (2019). Effects of nitrogen-doping on the photophysical properties of carbon dots. Journal of Materials Chemistry C, 7(4), 853–862.

Mansuriya, B. D., & Altintas, Z. (2021). Carbon dots: Classification, properties, synthesis, characterization, and applications in health care-an updated review (2018–2021). Nanomaterials, 11(19), 1-55.

Olmos-Moya, P. M., Velazquez-Martinez, S., Pineda-Arellano, C., Rangel-Mendez, J. R., & Chazaro-Ruiz, L. F. (2022). High added value functionalized carbon quantum dots synthetized from orange peels by assisted microwave solvothermal method and their performance as photosensitizer of mesoporous TiO2 photoelectrodes. Carbon, 187(2), 216–229.

Pontes, S. M. A., Rodrigues, V. S. F., Carneiro, S. V., Oliveira, J. J. P., Moura, T. A., Paschoal, A. R., Antunes, R. A., O;iveira, D. R. D., Oliveira, J. R., Fechine, L. M. U. D., Mazzetto, S. E., Fechine, P. B. A., & Clemente, C. D. S. (2022). One-pot solvothermal synthesis of full-color carbon quantum dots for application in light emitting diodes. Nano-Structures & Nano-Objects, 32(10), 1-10.

Pramudita, R., Marpongahtun., Gea, S., Daulay, A., Harahap, M., Tan, Y. Z., Goei, R., & Tok, A. L. Y. (2022). Synthesis of fluorescent citric acid carbon dots composites derived from empty fruit bunches of palm oil tree and its anti-bacterial property. Case Studies in Chemical and Environmental Engineering, 6(1), 1-8.

Rajapandi, S., Pandeeswaran, M., & Kousalya, G. N. (2022). Novel green synthesis of N-doped carbon dots from fruits of opuntia ficus indica as an effective catalyst for the photocatalytic degradation of methyl orange dye and antibacterial studies. Inorganic Chemistry Communications, 146(9), 1387-1394.

Sai, L., Liu, S., Qian, X., Yu, Y., & Xu, X. (2018). Nontoxic fluorescent carbon nanodot serving as a light conversion material in plant for UV light utilization. Colloids and Surfaces B: Biointerfaces, 169(5), 422–428.

Sharma, A., & Das, J. (2019). Small molecules derived carbon dots: Synthesis and applications in sensing, catalysis, imaging, and biomedicine. Journal of Nanobiotechnology, 17(1), 1–24.

Singh, A. K., Singh, V. K., Singh, M., Singh, P., Khadim, S. R., Singh, U., & Asthana, R. K. (2019). One pot hydrothermal synthesis of fluorescent NP-carbon dots derived from dunaliella salina biomass and its application in on-off sensing of Hg (II), Cr (VI) and live cell imaging. Journal of Photochemistry and Photobiology A: Chemistry, 376(5), 63–72.

Wu, J., Lu, Q., Wang, H., & Huang, B. (2022). Passivator-free microwave–hydrothermal synthesis of high quantum yield carbon dots for all-carbon fluorescent nanocomposite films. Nanomaterials, 12(15), 2624-2637.

Xu, S., Liu, Y., Yang, H., Zhao, K., Li, J., & Deng, A. (2017). Fluorescent nitrogen and sulfur co-doped carbon dots from casein and their applications for sensitive detection of Hg2+ and biothiols and cellular imaging. Analytica Chimica Acta, 964(1), 150–160.

Yadav, P. K., Chandra, S., Kumar, V., Kumar, D., & Hasan, S. H. (2023). Carbon quantum dots: Synthesis, structure, properties, and catalytic applications for organic synthesis. Catalysts, 13(2), 1-22.

Yan, F., Sun, Z., Zhang, H., Sun, X., Jiang, Y., & Bai, Z. (2019). The fluorescence mechanism of carbon dots, and methods for tuning their emission color: A review. Microchimica Acta, 186(583), 1-37.

Yi, Z., Li, X., Zhang, H., Ji, X., Sun, W., Yu, Y., Liu, Y., Huang, J., Sarshar, Z., & Sain, M. (2021). High quantum yield photoluminescent N-doped carbon dots for switch sensing and imaging. Talanta, 222(1), 1-10.

Zhang, L., Wang, Y., Liu, W., Ni, Y., & Hou, Q. (2019). Corncob residues as carbon quantum dots sources and their application in detection of metal ions. Industrial Crops and Products, 133(7), 18–25.

Zhang, Z., & Fan, Z. (2021). Application of cerium–nitrogen co-doped carbon quantum dots to the detection of tetracyclines residues and bioimaging. Microchemical Journal, 165(3), 1-8.

Zhou, R., Chen, C., Hu, J., Liao, X., Hu, H., Tong, Z., Liang, J., & Huang, F. (2022). The self-nitrogen-doped carbon quantum dots derived from morus alba l. leaves for the rapid determination of tetracycline. Industrial Crops and Products, 188(11), 926-937.

Downloads

Published

2024-07-30

How to Cite

Prayugo, A. S., Marpongahtun, M., & Gea, S. (2024). Impact of the Concentration Ethylenediamine on Optical Properties of Carbon Dots from Jengkol Peel (Archinendron pauciflorum). Jurnal Akademika Kimia, 12(1), 20-25. https://doi.org/10.22487/j24775185.2023.v12.i1.pp20-25

Issue

Section

Articles