Optimization of Palm Bunch Ash-Based Catalysts for the Transesterification of Waste Cooking Oil into Biodiesel

Authors

  • Fillah M. Sakhi Universitas Negeri Malang
  • Aman Santoso Universitas Negeri Malang
  • Sumari Sumari Universitas Negeri Malang

DOI:

https://doi.org/10.22487/j24775185.2025.v14.i1.pp40-50

Keywords:

Heterogeneous catalyst, palm bunch ash, waste cooking oil, FAME

Abstract

The increasing dependence on fossil fuels to meet fuel needs has caused several problems, such as air pollution, greenhouse effects, unpleasant odors, and loud noises. This research aims to design an alternative fuel in the form of biodiesel by applying a heterogeneous catalyst based on palm bunch to synthesize biodiesel through transesterification. The research stages include activating the active sites of palm bunches through calcination at temperatures of 400 °C, 500 °C, and 600 °C; refining waste cooking oil; esterification; and transesterification. The active components of palm bunch ash (PBA) were characterized using XRF and alkalinity testing. XRF results indicated that PBA contains active basic compounds such as K₂O and CaO, crucial in catalytic activity. Physical-chemical property testing revealed that the synthesis achieved the highest yield of 93.744 %. The results of the physical-chemical characteristic tests produced the best density with an average of 0.888 g mL⁻¹, and the lowest viscosity with an average of 3.79 cSt at 40 °C with an iodine number of 80.116 g I₂ 100 g⁻¹, a saponification number of 170.57 mg KOH g⁻¹, and a refractive index of 1.445. The catalyst demonstrated stable performance up to three reuses with yields ranging from 80–90 %. FTIR spectra showed strong absorption bands at 1172–1165 cm⁻¹, indicating C-O-CH₃ stretching from methyl esters. GC-MS analysis showed that the biodiesel consists of various fatty acid methyl esters (FAME), with the main component being methyl oleate, which appears at a retention time of 37.096 minutes with an area of 40.31 %. So it is shown that PBA catalysts have an excellent potential for commercial applications as they can reduce dependence on fossil fuels by utilizing household waste.

Author Biographies

Fillah M. Sakhi, Universitas Negeri Malang

Program Studi Kimia/FMIPA

Aman Santoso, Universitas Negeri Malang

Program Studi Kimia/FMIPA

Sumari Sumari, Universitas Negeri Malang

Program Studi Kimia/FMIPA

References

Agunbiade, F. O., & Adewole, T. A. (2014). Methanolysis of carica papaya seed oil for the production of biodiesel. Journal of Fuels, 2014(1), 1–6.

Attari, A., Mayvan, A. A., & Alisaraie, A. T. (2022). Process optimization of ultrasonic-assisted biodiesel production from waste cooking oil using waste chicken eggshell-derived CaO as a green heterogeneous catalyst. Biomass and Bioenergy, 158(January). 106357

Aworanti, O. A., Agbede, O. O., Popoola, A. O., Ogunsola, A. D., Agarry, S. E., Adekunle, O. J., Ogunkunle, O., Laseinde, O. T., Odesanmi, A. A., & Alade, A. O. (2022). Synthesized heterogeneous nano-catalyst from cow teeth for fatty acid methyl esters production through transesterification of waste vegetable frying oil and methanol: Characterization and optimization studies. Engineering Reports, 5(5), 1–25.

Berchmans, H. J., & Hirata, S. (2008). Biodiesel production from crude Jatropha curcas L. seed oil has a high content of free fatty acids. Bioresource Technology, 99(6), 1716–1721.

Boey, P. L., Maniam, G. P., & Hamid, S. A. (2009). Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. Bioresource Technology, 100(24), 6362–6368.

Chi, L. (1999). The production of methyl esters from vegetable oil/fatty acid mixtures. Thesis, University Of Toronto, Ontario, Canada.

Fereidooni, L., Abbaspourrad, A., & Enayati, M. (2021). Electrolytic transesterification of waste frying oil using Na+/zeolite–chitosan biocomposite for biodiesel production. Waste Management, 127(May), 48–62.

Galadima, A., & Muraza, O. (2020). Waste materials for production of biodiesel catalysts: Technological status and prospects. Journal of Cleaner Production, 263(August), 121358.

Hädeler, J. (2025). Natural abiotic iron-mediated formation of C1 and C2 compounds from environmentally important methyl-substituted substrates and their implication for nature. Dissertation, Ruprecht Karls University Heidelberg, Heidelberg, Germany.

Hambali, E., Mujdalifah, S., Tambunan, A. H. Prattiwiri, A. W., & Hendroko, R. (2007). Teknologi Bioenergi. Tangerang: PT AgroMedia Pustaka.

Ismiyarto, Halim, S. A., & Wibawa, P. J. (2006). Identification of fatty acid compotition in turi seed oil (Sesbania grandifora (L) Pers). Jurnal Kimia Sains dan Aplikasi, IX(1), 1–3.

Japir, A. A. W., Salimon, J., Derawi, D., Bahadi, M., Al-Shuja’A, S., & Yusop, M. R. (2017). Physicochemical characteristics of high free fatty acid crude palm oil. Oilseeds and Fats, Crops and Lipids, 24(5), 1-9.

Jiang, S., You, Z., & Tang, N. (2023). Effects of calcination temperature and calcination atmosphere on the performance of CO3O4 catalysts for the catalytic oxidation of toluene. Processes, 11(7), 1-14.

Joshi, S., Gogate, P. R., Moreira, P. F., & Giudici, R. (2017). Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer. Ultrasonics Sonochemistry, 39(November), 645–653.

Khatibi, M., Khorasheh, F., & Larimi, A. (2021). Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell. Renewable Energy, 163(January), 1626–1636.

Knothe, G., & Steidley, K. R. (2011). Kinematic viscosity of fatty acid methyl esters: Prediction, calculated viscosity contribution of esters with unavailable data, and carbon-oxygen equivalents. Fuel, 90(11), 3217–3224.

Maneechakr, P., & Karnjanakom, S. (2021). Systematic production of biodiesel fuel from palm oil over porous K2O.CaO catalyst derived from waste chicken eggshell via RSM/kinetic/thermodynamic studies. Journal of Environmental Chemical Engineering, 9(6), 106542.

Mulyani, Y., Nurhayati, & Awaluddin, A. (2024). Effect of acidity , basicity , and heterogeneous CaO/silica gel catalyst from biomass waste on biodiesel yield from crude palm oil. Al Kimiya: Jurnal Ilmu Kimia Dan Terapan, 11(2), 121–131.

Mustafa, K., Oko, S., & Sirajuddin, S. Z. (2023). Utilization of red onion skin extract as a natural antioxidant to reduce free fatty acid levels in used cooking oil. International Journal of Multidisciplinary Reseacrh and Publications, 6(6), 264–267.

Niju, S., Begum, K. M. M. S., & Anantharaman, N. (2014). Modification of egg shell and its application in biodiesel production. Journal of Saudi Chemical Society, 18(5), 702–706.

Nuryanti R., Anggraini, I. F., Sari D. K., & Sonya. (2023). Uji kualitas bahan bakar biodiesel dari minyak jelantah (penggorengan pecel lele) dengan parameter uji spesific gravity 60/60 ˚f astm d-1298, distilasi astm d-86, viskositas kinematik astm d-445, flash point pm astm d-93, pour point astm d-97 dan cetane. Jurnal Cakrawala Ilmiah, 3(1), 229–236.

Okoye, P. U., Wang, S., Xu, L., Li, S., Wang, J., & Zhang, L. (2019). Promotional effect of calcination temperature on structural evolution, basicity, and activity of oil palm empty fruit bunch derived catalyst for glycerol carbonate synthesis. Energy Conversion and Management, 179(January), 192–200.

Patil, A. D., Baral, S. S., Dhanke, P. B., Madankar, C. S., Patil, U. S., & Kore, V. S. (2018). Parametric studies of methyl esters synthesis from thumba seed oil using heterogeneous catalyst under conventional stirring and ultrasonic cavitation. Materials Science for Energy Technologies, 1(2018), 106–116.

Phetrungnapha, A., Wiengnak, N., & Maikrang, K. (2023). Removal of free fatty acid from waste cooking oil using an adsorbent derived from cassava peels. Korean Journal of Chemical Engineering, 40(9), 2253–2262.

Posada, L. R., Shi, J., Kakuda, Y., & Xue, S. J. (2007). Extraction of tocotrienols from palm fatty acid distillates using molecular distillation. Separation and Purification Technology, 57(2), 220–229.

Rusdi, H. O., Kusumaningrum, I. K., Nareswari, T. J., Fauziah, P. N., Maharani, R. N., & Natasya, S. (2024). Separation and determination of free fatty acids in corn oil and palm oil by liquid-liquid extraction and acidi-alkalimetric titration. Walisongo Journal of Chemistry, 7(1), 98-106.

Saleem, M., Jamil, F., Qamar, O. A., Akhter, P., Hussain, M., Khurram, M. S., Al-Muhtaseb, A. H., Inayat, A., & Shah, N. S. (2022). Enhancing the catalytic activity of eggshell-derived cao catalyst and its application in biodiesel production from waste chicken fat. Catalysts, 12(12), 1-14.

Santos, J. C. O., Santos, I. M. G., & Souza, A. G. (2005). Effect of heating and cooling on rheological parameters of edible vegetable oils. Journal of Food Engineering, 67(4), 401–405.

Santoso, A., Sumari, Asrori, M. R., & Januarti, W. (2023). Biodiesel characterization study from castor oil (Jatropha curcas L) with CaO/K2O catalyst. Jurnal IPTEK Media Komunikasi Teknologi, 27(2), 95–106.

Santoso, A., Sumari, S., Sukarianingsih, D., & Sari, R. M. (2018). Optimization of Synthesis of Biodiesel from Jatropha curcas L. with Heterogeneous Catalyst of CaO and MgO by Transesterification Reaction Using Microwave. Journal of Physics: Conference Series, 1093(September), 1-8.

Santoso, A., Sumari, Salim, A., & Marfu’ah, S. (2018). Synthesis of Methyl Ester from Chicken Oil and Methanol Using Heterogeneous Catalyst of CaO-MgO as well as Characterization its Potential as a Biodiesel Fuel. Journal of Physics: Conference Series, 1093(September), 1-9.

Sujadi, Hasibuan, H. A., Rahmadi, H. Y., & Purba, A. R. (2016). Komposisi asam lemak dan bilangan iod minyak dari sembilan varietas kelapa sawit DxP komersial di PPKS. Jurnal Penelitian Kelapa Sawit, 24(1), 1–11.

Sumari, Santoso, A., & Asrori, M. R. (2021). A review: Synthesis of biodiesel from low/off grade crude palm oil on pretreatment, transesterification, and characteristics. Orbital: the Electron Journal of Chemistry, 13(4), 385–391.

Suroso, A. S. (2013). Kualitas minyak goreng habis pakai ditinjau dari bilangan peroksida, bilangan asam dan kadar air. Jurnal Kefarmasian Indonesia, 3(2), 77-88.

Torres A., Fuentes B., Rodríguez, K. E., Brito, A., & Díaz, L. (2020). Analysis of the content of fatty acid methyl esters in biodiesel by fourier-transform infrared spectroscopy: method and comparison with gas chromatography. Journal of the American Oil Chemists' Society, 97(6), 651–661.

Verduzco, R. L. F., Rodríguez-Rodríguez, J. E., & Jaramillo-Jacob, A. D. R. (2012). Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel, 91(1), 102–111.

Widyaningsih, F., Irwanto, R., & Panjaitan, D. (2023). Characterization of Oil Palm Sap (Elaeis guineensis Jacq. Results of Zero Waste Based Waste Treatment). Jurnal Kesehatan Masyarakat dan Gigi, 5(2), 195–202.

Wiege, B., Fehling, E., Matthäus, B., & Schmidt, M. (2020). Changes in physical and chemical properties of thermally and oxidatively degraded sunflower oil and palm fat. Foods, 9(9), 1-14.

Yucel, O. S., & Turkay, S. (2002). Variables affecting the yields of methyl esters derived from in situ esterification of rice bran oil. Journal of the American Oil Chemists’ Society, 79(6), 611–614.

Zabeti, M., Wan Daud, W. M. A., & Aroua, M. K. (2009). Activity of solid catalysts for biodiesel production: A review. Fuel Processing Technology, 90(6), 770–777.

Zheng, Y., Zhang, W., Li, Y., Chen, J., Yu, B., Wang, J., Zhang, L., & Zhang, J. (2017). Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy, 40(October), 512–539.

Downloads

Published

2025-02-28

How to Cite

Sakhi, F. M., Santoso, A., & Sumari, S. (2025). Optimization of Palm Bunch Ash-Based Catalysts for the Transesterification of Waste Cooking Oil into Biodiesel. Jurnal Akademika Kimia, 14(1), 40–50. https://doi.org/10.22487/j24775185.2025.v14.i1.pp40-50

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 

You may also start an advanced similarity search for this article.