Perbandingan Kapabilitas Respons Chatgpt Dan Gemini Terhadap Pertanyaan Konseptual Tentang Optik

Authors

  • Mita Aulia Azizah Universitas Tadulako
  • Jusman Mansyur Universitas Tadulako

DOI:

https://doi.org/10.22487/jpft.v12i1.3510

Keywords:

ChatGPT, Gemini, Conceptual Questions, Optics

Abstract

Penelitian ini bertujuan untuk membandingkan kemampuan respons ChatGPT dan Gemini dengan pertanyaan konseptual tentang optik. Metode yang digunakan adalah penelitian kualitatif dengan pendekatan studi kasus komparatif. Subjek penelitian ini adalah ChatGPT dan Gemini, yang juga bertindak sebagai responden. Instrumen yang digunakan adalah 25 pertanyaan esai tentang optik. Penilaian didasarkan pada empat kriteria utama: Kejelasan Konseptual, Akurasi Konseptual, Pemahaman Konseptual, dan Konsistensi dalam Penjelasan. Hasilnya menunjukkan bahwa ChatGPT mengungguli Gemini dalam semua kriteria yang dinilai. ChatGPT memiliki kemampuan yang lebih baik dalam memberikan jawaban yang jelas, akurat, dan konsisten atas pertanyaan konseptual tentang optik dibandingkan dengan Gemini. Di sisi lain, Gemini cenderung memberikan jawaban yang kurang akurat dan kurang mendalam, dengan variasi konsistensi penjelasannya.

References

OpenAI, “ChatGPT: Optimizing language models for dialogue,” OpenAI blog, 2022. https://openai.com/blog/chatgpt

S. Pichai and D. Hassabis, “Introducing Gemini: our largest and most capable AI model,” Google, 2023. https://blog.google/technology/ai/google-gemini-ai/

C. K. Lo, “What is the impact of ChatGPT on education? A rapid review of the literature,” Educ. Sci., vol. 13, no. 4, 2023, doi: 10.3390/educsci13040410.

G. Kortemeyer, “Toward AI grading of student problem solutions in introductory physics: A feasibility study,” Phys. Rev. Phys. Educ. Res., vol. 19, no. 2, p. 20163, 2023, doi: 10.1103/PhysRevPhysEducRes.19.020163.

M. A. R. Vasconcelos and R. P. dos Santos, “Enhancing STEM learning with ChatGPT and Bing Chat as objects to think with: A case study,” Eurasia J. Math. Sci. Technol. Educ., vol. 19, no. 7, 2023, doi: 10.29333/ejmste/13313.

R. P dos Santos, “Enhancing chemistry learning with ChatGPT, Bing Chat, Bard, and Claude as agents-to-think-with: A comparative case study,” SSRN Electron. J., 2023, doi: 10.2139/ssrn.4629567.

S. Küchemann et al., “Can ChatGPT support prospective teachers in physics task development?,” Phys. Rev. Phys. Educ. Res., vol. 19, no. 2, p. 20128, 2023, doi: 10.1103/PhysRevPhysEducRes.19.020128.

F. Kieser, P. Wulff, J. Kuhn, and S. Küchemann, “Educational data augmentation in physics education research using ChatGPT,” Phys. Rev. Phys. Educ. Res., vol. 19, no. 2, p. 20150, 2023, doi: 10.1103/PhysRevPhysEducRes.19.020150.

G. Polverini and B. Gregorcic, “How understanding large language models can inform the use of ChatGPT in physics education,” Eur. J. Phys., vol. 45, no. 2, 2024, doi: 10.1088/1361-6404/ad1420.

G. Kortemeyer, “Could an artificial-intelligence agent pass an introductory physics course,” Phys. Rev. Phys. Educ. Res., vol. 19, no. 1, p. 10132, 2023, doi: 10.1103/PhysRevPhysEducRes.19.010132.

G. Polverini and B. Gregorcic, “Performance of ChatGPT on the test of understanding graphs in kinematics,” Phys. Rev. Phys. Educ. Res., vol. 20, no. 1, p. 10109, 2024, doi: 10.1103/PhysRevPhysEducRes.20.010109.

W. Yeadon, O. O. Inyang, A. Mizouri, A. Peach, and C. P. Testrow, “The death of the short-form physics essay in the coming AI revolution,” Phys. Educ., vol. 58, no. 3, 2023, doi: 10.1088/1361-6552/acc5cf.

B. Gregorcic and A. M. Pendrill, “ChatGPT and the frustrated Socrates,” Phys. Educ., vol. 58, no. 3, pp. 1–8, 2023, doi: 10.1088/1361-6552/acc299.

M. N. Dahlkemper, S. Z. Lahme, and P. Klein, “How do physics students evaluate artificial intelligence responses on comprehension questions A study on the perceived scientific accuracy and linguistic quality of ChatGPT,” Phys. Rev. Phys. Educ. Res., vol. 19, no. 1, p. 10142, 2023, doi: 10.1103/PhysRevPhysEducRes.19.010142.

Gemini Team et al., “Gemini: A family of highly capable multimodal models,” Dec. 2023, [Online]. Available: http://arxiv.org/abs/2312.11805

M. Nyaaba, “Comparing Human and AI’s (GPT-4 and Gemini) Understanding of the Nature of Science,” SSRN Electron. J., 2023, doi: 10.2139/ssrn.4661602.

N. Rane, S. Choudhary, and J. Rane, “Gemini versus ChatGPT: applications, performance, architecture, capabilities, and implementation,” SSRN Electron. J., 2024, doi: 10.2139/ssrn.4723687.

P. Perera and M. Lankathilake, “Preparing to revolutionize education with the multi-model GenAI tool Google Gemini? A journey towards effective policy making,” J. Adv. Educ. Philos., vol. 7, no. 08, pp. 246–253, 2023, doi: 10.36348/jaep.2023.v07i08.001.

C. Chen, L. Bao, J. C. Fritchman, and H. Ma, “Causal reasoning in understanding Newton’s third law,” Phys. Rev. Phys. Educ. Res., vol. 17, no. 1, p. 10128, 2021, doi: 10.1103/PhysRevPhysEducRes.17.010128.

W. Xu et al., “Assessment of knowledge integration in student learning of momentum,” Phys. Rev. Phys. Educ. Res., vol. 16, no. 1, p. 010130, May 2020, doi: 10.1103/PHYSREVPHYSEDUCRES.16.010130.

Z. Liu, S. Pan, X. Zhang, and L. Bao, “Assessment of knowledge integration in student learning of simple electric circuits,” Phys. Rev. Phys. Educ. Res., vol. 18, no. 2, p. 20102, 2022, doi: 10.1103/PhysRevPhysEducRes.18.020102.

S. Mi, J. Ye, L. Yan, and H. Bi, “Development and validation of a conceptual survey instrument to evaluate senior high school students’ understanding of electrostatics,” Phys. Rev. Phys. Educ. Res., vol. 19, no. 1, p. 10114, 2023, doi: 10.1103/PhysRevPhysEducRes.19.010114.

R. Dai, J. C. Fritchman, Q. Liu, Y. Xiao, H. Yu, and L. Bao, “Assessment of student understanding on light interference,” Phys. Rev. Phys. Educ. Res., vol. 15, no. 2, p. 20134, 2019, doi: 10.1103/PhysRevPhysEducRes.15.020134.

K. Matejak Cvenic, M. Planinic, A. Susac, L. Ivanjek, K. Jelicic, and M. Hopf, “Development and validation of the conceptual survey on wave optics,” Phys. Rev. Phys. Educ. Res., vol. 18, no. 1, p. 10103, 2022, doi: 10.1103/PhysRevPhysEducRes.18.010103.

S. Wörner, S. Becker, S. Küchemann, K. Scheiter, and J. Kuhn, “Development and validation of the ray optics in converging lenses concept inventory,” Phys. Rev. Phys. Educ. Res., vol. 18, no. 2, p. 20131, 2022, doi: 10.1103/PhysRevPhysEducRes.18.020131.

E. R. Mollick and L. Mollick, “New modes of learning enabled by AI chatbots: three methods and assignments,” SSRN Electron. J., 2022, doi: 10.2139/ssrn.4300783.

S. Arikunto, Prosedur Penelitian: Sebuah Pendekatan Praktik. Jakarta: Rineka Cipta, 2006.

E. P. Widyoko, Evaluasi Program Pembelajaran: Panduan Praktis Bagi Pendidik dan Calon Pendidik. Yogyakarta: Pustaka Pelajar, 2009.

Downloads

Published

2025-04-20